
6.4.1a For
$$\mathbf{z} = \begin{bmatrix} 4+2i \\ 4i \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} -2 \\ 2+i \end{bmatrix}$, compute $\|\mathbf{z}\|$, $\|\mathbf{w}\|$, $\langle \mathbf{z}, \mathbf{w} \rangle$, and $\langle \mathbf{w}, \mathbf{z} \rangle$.

Solution: $\|\mathbf{z}\| = \sqrt{\mathbf{z}^H \mathbf{z}} = \sqrt{36} = 6$, $\|\mathbf{w}\| = \sqrt{\mathbf{w}^H \mathbf{w}} = \sqrt{9} = 3$, $\langle \mathbf{z}, \mathbf{w} \rangle = \mathbf{w}^H \mathbf{z} = -4 + 4i$, and $\langle \mathbf{w}, \mathbf{z} \rangle = \mathbf{z}^H \mathbf{w} = -4 - 4i$.

6.4.2b Let
$$\mathbf{z}_1 = \begin{bmatrix} \frac{1+i}{2} \\ \frac{1-i}{2} \end{bmatrix}$$
, and $\mathbf{z}_2 = \begin{bmatrix} \frac{i}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$. Write the vector $\mathbf{z} = \begin{bmatrix} 2+4i \\ -2i \end{bmatrix}$ as a linear combination of \mathbf{z} , and \mathbf{z}

Solution: From part (a) of this exercise, we know that $\{\mathbf{z}_1, \mathbf{z}_2\}$ is an orthonormal set, so we don't have to work very hard to come up with coefficients c_1, c_2 such that $\mathbf{z} = c_1 \mathbf{z}_1 + c_2 \mathbf{z}_2$. By Theorem 5.5.2 and the definition of the complex inner product, $c_1 = \langle \mathbf{z}, \mathbf{z}_1 \rangle = 4$, and $c_2 = \langle \mathbf{z}, \mathbf{z}_2 \rangle = 2\sqrt{2}$.

- 6.4.3 Let $\{\mathbf{u}_1, \mathbf{u}_2\}$ be an orthonormal basis for \mathbb{C}^2 , and let $\mathbf{z} = (4+2i)\mathbf{u}_1 + (6-5i)\mathbf{u}_2$.
 - (a) What are the values of $\mathbf{u}_1^H \mathbf{z}, \mathbf{z}^H \mathbf{u}_1, \mathbf{u}_2^H \mathbf{z}$, and $\mathbf{z}^H \mathbf{u}_2$? Solution:

$$\mathbf{u}_{1}^{H}\mathbf{z} = \mathbf{u}_{1}^{H} ((4+2i)\mathbf{u}_{1} + (6-5i)\mathbf{u}_{2})$$

$$= (4+2i)\mathbf{u}_{1}^{H}\mathbf{u}_{1} + (6-5i)\mathbf{u}_{1}^{H}\mathbf{u}_{2}$$

$$= 4+2i.$$

Similarly $\mathbf{z}^H \mathbf{u}_1 = \overline{\mathbf{u}_1^H \mathbf{z}} = 4 - 2i$, $\mathbf{u}_2^H \mathbf{z} = 6 - 5i$, and $\mathbf{z}^H \mathbf{u}_2 = \overline{\mathbf{u}_2^H \mathbf{z}} = 6 + 5i$.

- (b) What is the value of $\|\mathbf{z}\|$? Solution: $\|\mathbf{z}\|^2 = \mathbf{z}^H \mathbf{z} = (4+2i)(4-2i) + (6-5i)(6+5i) = 16+4+36+25 = 81$, so $\|\mathbf{z}\| = 9$.
- 6.4.5 Find an orthogonal or unitary diagonalizing matrix for each of the following matrices.

(a)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
.

Solution: \tilde{A} is real and symmetric, so we know that if A has distinct eigenvalues then the corresponding eigenvectors are orthogonal. The eigenvalues turn out to be $\lambda_1 = 1$ and $\lambda_2 = 3$. The corresponding eigenvectors may be taken to be $\mathbf{u}_1 = 1$

be
$$\lambda_1 = 1$$
 and $\lambda_2 = 3$. The corresponding eigenvectors may be taken to be \mathbf{u}_1
$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, and a diagonalizing matrix for A is $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$.

(c) $A = \begin{bmatrix} 2 & i & 0 \\ -i & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. The eigenvalues of A are $\lambda_1 = 1$, $\lambda_1 = 2$, and $\lambda_1 = 3$. The corresponding unit eigenvectors may be taken to be

$$\mathbf{u}_1 = \begin{bmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{u}_3 = \begin{bmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix},$$

and the diagonalizing matrix is $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$. It's a good idea to check:

$$\begin{bmatrix} \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ \frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} 2 & i & 0\\ -i & 2 & 0\\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{-i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix}.$$

6.4.10 Given $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & i \\ 0 & -i & 1 \end{bmatrix}$, find a matrix B such that $B^HB=A$.

Solution: Since A is Hermitian, it follows that A is diagonalizable by a unitary matrix U, i.e., $A = UDU^H$. Letting $B = D^{1/2}U^H$, we have

$$B^H B = U \overline{D^{1/2}} D^{1/2} U^H = U D U^H = A.$$

In this particular case, we may take $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & i/\sqrt{2} & -i/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ and $D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

from which we obtain $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -i & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

- 6.4.11 Let U be a unitary matrix. Prove:
 - (a) U is normal.
 - (b) $||U\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbf{C}^n$.
 - (c) If λ is an eigenvalue of U, then $|\lambda| = 1$.

Solution:

(a) Since $U^{-1} = U^H$, then $U^H U = U U^H$, and so U is normal.

(b) It suffices to show that $||U\mathbf{x}||^2 = ||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbf{C}^n$. So let $\mathbf{x} \in \mathbf{C}^n$. Then

$$||U\mathbf{x}||^2 = (U\mathbf{x})^H(U\mathbf{x}) = \mathbf{x}^H U^H U\mathbf{x} = \mathbf{x}^H \mathbf{x} = ||\mathbf{x}||^2$$

(c) Let \mathbf{x} be an eigenvector for U, with associated eigenvalue λ . Then $U\mathbf{x} = \lambda \mathbf{x}$, so $||U\mathbf{x}|| = ||\mathbf{x}|| = |\lambda| ||\mathbf{x}||$, and it follows that $|\lambda| = 1$.